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Abstract 

In recent years, artificial intelligence (AI) has advanced rapidly, driven by enhanced computing power and iterative 

algorithm development. This progress has facilitated the widespread application of AI across various medical domains, 

including medical imaging, disease diagnosis, and drug research and development. In anesthesiology, research focuses 

on the comprehensive management of the perioperative period. AI optimizes key processes such as preoperative risk 

assessment, intraoperative drug monitoring, and postoperative adverse event management. This integration not only 

standardizes anesthesia practices more effectively but also significantly enhances intraoperative safety and alleviates 

postoperative discomfort. 

However, the application of AI in anesthesiology still faces several challenges, including inconsistent data quality, 

incomplete algorithms, and difficulties in system integration. The efficient synthesis and analysis of multi-modal, real-

time data to provide personalized, dynamically adjusted treatment strategies remains a major hurdle. 

The integration of AI and anesthesiology holds substantial practical significance. This paper provides a systematic 

discussion of AI's applications and benefits across the preoperative (e.g., anesthesia planning, risk prediction), 

intraoperative (e.g., real-time monitoring of vital signs), and postoperative (e.g., prognosis management) phases of 

anesthesia. It is hoped that this study will offer valuable technical insights for clinical practice and support the rapid 

development of anesthesiology towards greater intelligence. 
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Introduction  
The applications of artificial intelligence (AI) are 

rapidly expanding across various fields of social 

production and daily life, with particularly 

significant impacts in healthcare. Examples 

include intelligent assistants that support doctor-

patient communication, financial risk control to 

safeguard medical funds, and advanced medical 

diagnostics that enhance disease detection 

accuracy (1). Among AI's core branches, machine 

learning, reinforcement learning, and deep 

learning have gained considerable attention in 

medicine due to their powerful data processing 

capabilities (2-4). 

In clinical practice, AI has been progressively 

integrated into the entire workflow of medical 

diagnosis. AI assists clinicians in tasks such as 

endoscopic examinations, image interpretation 

during regional ultrasound-guided anesthesia, 

and the prediction of postoperative adverse 

events (5-7). By synthesizing diverse data, these 

models not only reduce the time required for 

diagnosis but also enhance the safety and 

accuracy of medical care. In anesthesiology, AI 

contributes by generating personalized 

anesthesia plans, predicting risks, and 

monitoring patients' vital signs in real time. It can 
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also dynamically adjust anesthesia plans and 

precisely administer anesthetic doses (8). 

Additionally, AI plays a crucial role in monitoring 

medication regimens and offering rehabilitation 

guidance to optimize patient recovery. As 

technologies continue to evolve, AI is driving 

anesthesiology toward greater precision and 

safety. 

Recent cutting-edge studies have significantly 

expanded AI applications in anesthesia. One 

study introduced an intelligent pen-based system 

for continuous monitoring of the anesthetic drug 

propofol, filling a critical gap in drug monitoring. 

This system enables closed-loop management 

between anesthesiologists and patients, further 

enhancing anesthesia safety (9). Another 

breakthrough, developed by Lee et al., is a 

reinforcement learning model that overcomes 

the limitations of traditional sedation 

management through closed-loop control. This 

model establishes the first patient-specific 

adaptive sedation protocol (10). These 

advancements have laid a strong foundation for 

the application of AI in anesthesiology, 

accelerating its transformation toward precision 

medicine. 

This study provides a comprehensive review of 

the research progress and applications of AI in 

anesthesiology, covering areas such as 

preoperative risk assessment, personalized plan 

formulation, and consciousness state monitoring; 

intraoperative real-time monitoring, airway 

management, drug monitoring, puncture 

identification, and adverse event detection; 

anesthetic depth monitoring based on 

multimodal data fusion; postoperative 

complication prediction and management; 

postoperative care and rehabilitation guidance; 

automated anesthesia record and document 

management; intelligent surgical scheduling; 

resource allocation; and ultrasound-guided 

regional anesthesia. This review aims to offer 

clinicians improved diagnostic tools and provide 

valuable research data to support the ongoing 

development of anesthesiology. 

Methods 
This study provides an overview of the 

application of artificial intelligence in anesthesia 

management, spanning the preoperative, 

intraoperative, and postoperative phases, and 

highlights the advantages of these applications. A 

comprehensive search was conducted using the 

PubMed database, with keywords including 

"artificial intelligence," "machine learning," "deep 

learning," "computer vision," and "anesthesia." 

We included all English-language articles 

published between 2020 and 2025, while 

excluding studies involving animals, editorials, 

letters to the editor, and reviews. 

Preoperative assessment and 
anesthesia plan formulation 
Preoperative risk assessment based on big 
data and machine learning 

In the preoperative phase, artificial intelligence 

(AI) predicts risks by integrating patients' 

baseline and laboratory data, assisting clinicians 

with diagnosis and treatment, and improving 

both the timeliness and accuracy of medical care. 

For example, the prediction model developed by 

Te et al. focuses on hemodynamic instability 

following endotracheal intubation. Using 

machine learning, the model alerts 

anesthesiologists to potential risks 

preoperatively, enabling personalized and 

precise anesthetic interventions (11). Miyaguchi 

et al. applied machine learning to automate drug 

infusion, addressing the challenge of 

anesthesiologist shortages. They employed six 

models—logistic regression, support vector 

machine, random forest, LightGBM, artificial 

neural network, and long short-term memory 

(LSTM) network—to predict the need for an 

increase in the remifentanil flow rate after one 

minute. Of these models, the LSTM network 

achieved a sensitivity of 0.659, specificity of 0.732, 
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and a ROC-AUC value of 0.753. Additionally, the 

Shapley Additive exPlanations (SHAP) method 

was used to assess feature importance, and the 

results showed partial consistency with 

established clinical findings (12). Furthermore, 

the Opal model, developed by Bishara et al., was 

the first machine learning model published in 

anesthesiology. Based on data from 29,004 

surgeries, this model, referencing the creatinine 

KDIGO criteria (a standard for evaluating acute 

kidney injury), serves as a preoperative tool for 

predicting postoperative acute kidney injury (AKI) 

(13). 

Intelligent generation of personalized 

anesthesia plans 

Personalized anesthesia plans are primarily 

developed by accurately selecting approaches 

based on patients' baseline data, such as age, 

weight, and overall health status. This enhances 

both safety and effectiveness while minimizing 

the risk of complications. Wang et al. used models 

including ChatGPT-4.0, Claude 3.5 Sonnet, and 

ChatGPT-01 to develop preoperative plans. Their 

findings revealed that ChatGPT-01 outperformed 

the other models in terms of content relevance 

and information accuracy, with a lower error rate, 

making it more suitable for clinical application 

(14). In the context of ophthalmic anesthesia, 

Zhang et al. integrated natural language 

processing and machine learning technologies, 

utilizing an embedding model to create safer and 

more efficient personalized anesthesia 

management (15). 

Puncture recognition 

Puncture identification is a critical technique in 

anesthesia and interventional surgery, but it is 

often challenged by interference from complex 

anatomical structures and the high level of skill 

required. Artificial intelligence (AI)-assisted 

technology has provided a promising solution by 

enabling the identification of complex structures 

and real-time dynamic tracking. For example, 

Chan et al. proposed the use of machine learning 

to identify spinal anesthesia puncture sites in 

obese patients, offering valuable support in 

locating puncture sites for this patient group. 

Furthermore, the "depth from the skin to the 

posterior dural complex," as recorded by the 

program, demonstrated a strong correlation with 

depth measurements taken by clinicians (16). 

Intraoperative monitoring and 
anesthetic depth regulation 
Intraoperative real-time monitoring 

Intraoperative real-time monitoring is a crucial 

component in ensuring patient safety. Artificial 

intelligence (AI) can track vital indicators such as 

patients' vital signs and organ function, providing 

timely feedback to medical staff and enabling 

rapid adjustments to treatment plans. For 

instance, the FaCare photoplethysmography 

system, proposed by Ke et al., has been shown to 

reduce the risk of infection and alleviate patient 

discomfort (17). In their study on the use of 

clonidine and tranexamic acid to control 

intraoperative blood loss during rhinoplasty, 

Asghari Varzaneh et al. demonstrated that their 

predictive model performed robustly, helping to 

optimize the surgical field and reduce operation 

time (18). Aguet et al. combined 

photoplethysmographic (PPG) waveform 

features with machine learning to accurately 

track blood pressure changes during anesthetic 

induction (19). Mosquera Dussan et al. applied 

biosignal filtering and machine learning 

algorithms to classify and diagnose 

intraoperative Alzheimer's disease (AD) (20). 

Wang et al. used a deep learning model to infer 

brain states during anesthesia (21). Additionally, 

Pasma et al.'s research on artifact annotation in 

anesthetic blood pressure data suggested that 

physiological data collected during anesthesia 

could be automated for artifact detection (22). 

Intraoperative airway management 
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Intraoperative airway management is a critical 

component of surgical safety, with its importance 

spanning three key areas: maintaining 

respiratory function, responding to sudden risks, 

and adapting to the specific demands of the 

surgery. Huang et al. employed a machine 

learning model to predict extubation failure in 

patients with difficult airway management 

following general anesthesia for maxillofacial 

surgery. This model may help reduce morbidity 

and mortality in such patients (23). García-García 

et al. used a deep convolutional neural network to 

analyze patients' airway morphology, 

demonstrating advantages in identifying and 

localizing landmarks. Notably, in the anterior 

view, the network's accuracy surpassed that of 

anesthesiologists (24). Lee et al. applied a 

reinforcement learning model for ventilation 

control during the emergence from general 

anesthesia. Their AIVE model showed greater 

estimated benefits and fewer complications 

compared to traditional clinical strategies (25). 

Shimizu et al. introduced a new acoustic 

monitoring system that accurately predicts the 

retention of upper airway fluid, potentially 

reducing the risk of aspiration during the 

monitored anesthesia care (MAC) period (26). 

Drug Monitoring 

Real-time monitoring of blood drug 

concentrations during surgery is essential for 

helping medical staff assess patients' physical 

signs and prevent adverse events such as 

respiratory depression and circulatory failure. 

Khalid et al. proposed a method that combines a 

machine learning classifier with 

photoplethysmography (PPG) for intraoperative 

anesthetic depth analysis and postoperative 

monitoring. This approach holds promise as a 

reliable, non-invasive, and low-cost method for 

anesthetic drug detection (27). Ren et al. 

implemented intelligent drug control based on 

convolutional neural networks during the 

maintenance phase of general anesthesia. Their 

open-loop decision-making scheme 

demonstrated consistency between intelligent 

anesthesia control and actual anesthesia 

management, paving the way for further 

optimization of intelligent auxiliary control for 

anesthetic depth (28). Jin et al. assessed 

individual sensitivity to propofol by analyzing 

EEG complexity and information integration, 

highlighting the value of preoperative brain state 

assessment in predicting drug sensitivity. This 

approach is significant for developing more 

precise anesthesia plans (29). Aiassa et al. 

introduced the first intelligent system for 

continuous monitoring of the anesthetic drug 

propofol. This system addresses a critical gap in 

therapeutic drug monitoring (TDM), enables 

closed-loop management between physicians 

and patients, and significantly enhances 

anesthesia safety (9). 

Conscious state 

The depth of anesthesia is critical for patient 

safety during surgery: insufficient depth may lead 

to intraoperative awareness and movement, 

disrupting the surgical procedure, while 

excessive depth can cause respiratory depression 

and prolong postoperative recovery. Abel et al. 

applied machine learning based on the 

electroencephalogram (EEG) spectrum to classify 

unconscious states under GABAergic sedation. 

This method effectively predicts the anesthetic 

state, offering potential for precise monitoring of 

anesthesia depth (30). Tacke et al. integrated and 

analyzed data from EEG and auditory evoked 

potential (AEP) monitoring. Their model 

achieved a maximum prediction probability of 

0.935 for consciousness states, outperforming 

the prediction accuracy of individual indicators. 

This approach enables more efficient 

differentiation between conscious and 

unconscious states (31). Additionally, Jang et al. 

proposed a metric based on functional magnetic 

resonance imaging (fMRI), called the integration-

separation difference. This metric captures two 

https://doi.org/10.63794/ia25001


Zou et al.  Artificial intelligence automated anesthesia 

©  2025 International Association for Intelligent Anesthesia 5 Intelligent Anesthesia 2025;09(1):1. doi: 10.63794/ia25002 

key attributes—network efficiency and 

clustering coefficient—and has been confirmed 

as a reliable indicator for evaluating 

consciousness states (32). 

Intraoperative adverse event prediction 

Intraoperative adverse event prediction is crucial 

for ensuring patient safety, as it allows for the 

real-time detection of sudden risks such as 

massive bleeding, hypotension, and drug 

allergies, preventing these issues from escalating 

into serious complications. Kang et al. employed 

Gradient Boosting Machine (GBM) and Logistic 

Regression (LR) models to predict hypoxemia 

during endoscopic retrograde 

cholangiopancreatography (ERCP) under 

monitored anesthesia care (MAC). These models 

demonstrated promising potential in preventing 

hypoxemia during ERCP with MAC anesthesia 

(33). In another study, Kang et al. used four 

models—Bayesian model, Logistic Regression, 

Random Forest, and Artificial Neural Network—

to predict post-induction hypotension occurring 

between endotracheal intubation and the 

surgical skin incision (34). Dervishi developed a 

multimodal superimposed model to estimate 

cardiac output based on cardiopulmonary 

interactions during general anesthesia. This 

model utilized clinical data from 469 adult 

patients with normal lung function undergoing 

general anesthesia. The prediction results were 

highly consistent with measurements obtained 

from pulse waveform technology monitors (35). 

Anesthetic depth monitoring based on 

multimodal data fusion 

Anesthetic depth monitoring is a critical 

component in ensuring both surgical safety and 

postoperative recovery. It allows for accurate 

assessment of the patient's anesthetic state, 

preventing adverse events caused by either 

insufficient or excessive anesthesia. Wang et al. 

predicted anesthetic depth based on drug 

infusion history, employing a framework that 

integrates sequence modeling, attention 

mechanisms, and nonlinear modeling techniques. 

This hybrid approach not only enhances the 

reliability of predictions but also provides 

anesthesiologists with a more comprehensive 

analysis of factors influencing anesthetic depth 

(36, 37). Chi et al. utilized an autoregressive 

Transformer model to predict anesthetic depth, 

proposing two frameworks: the Integrated Linear 

Autoregressive Framework (ILAR) and the Real-

time Transformer Autoregressive Framework 

(RTAR). Both frameworks enable numerical 

prediction of depth of anesthesia (DOA) during 

the induction phase. The two frameworks are 

tailored for different scenarios depending on 

whether the sensor can obtain real-time 

electroencephalographic bispectral index (BIS) 

values. Experimental results demonstrated that, 

compared to the previous Long Short-Term 

Memory-Multilayer Perceptron (LSTM-MLP) 

framework, the deviation between predicted BIS 

values and actual ground truth values was 

significantly smaller (38, 39). Afshar et al. 

proposed a method for real-time monitoring of 

anesthetic depth (DOA) through automatic 

analysis of electroencephalographic signals. This 

approach effectively aids anesthesiologists in 

making informed clinical decisions (8, 40, 41). 

Ultrasound-guided regional anesthesia 

The application of artificial intelligence (AI) in the 

field of regional ultrasound-guided anesthesia 

(including ultrasound-guided regional anesthesia, 

UGRA) focuses on three core areas: clinical 

operation assistance, training support, and data 

processing. 

In clinical operation assistance, Bowness et al. 

demonstrated that AI can accurately identify key 

anatomical structures, such as nerves and blood 

vessels, in ultrasound images. Through its 

annotation function, AI helps less experienced 

clinicians verify correct ultrasound sections, 

particularly improving the accuracy of non-UGRA 

experts (6). Additionally, AI-driven devices like 
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the ScanNav system can guide operators to focus 

on target areas, assist in optimizing clinical 

procedures, and significantly enhance the 

anatomical recognition ability of non-specialists, 

showing promise for expanding the application of 

regional anesthesia (42). 

Training support is another crucial area where AI 

is making an impact. Shevlin et al. found that AI 

could assist simulation devices like 

NeedleTrainer, potentially reducing the "target 

localization time" for novice practitioners. 

Moreover, it helps maintain better ultrasound 

scanning performance up to two months after 

training, thereby aiding skill retention (43). 

Furthermore, frameworks that incorporate 

differences in human-machine anatomical 

recognition and Dice metrics can enhance the 

consistency assessment of training. Notably, an 

innovative approach has been made to 

objectively quantify the visibility of needle tips in 

simulated UGRA, addressing a research gap (44). 

In data processing and interpretation, Julius et al. 

showed that AI can assist in the acquisition and 

analysis of ultrasound images, reducing human 

errors. In cardiac anesthesia, large language 

models (LLMs) can convert unstructured text 

reports from transesophageal echocardiography 

(TEE) into structured key parameters, 

overcoming the time-consuming and error-prone 

process of manual data extraction with 

controllable error rates (45). Moreover, AI is 

driving innovation in technical evaluation, such 

as analyzing human-machine anatomical 

recognition differences, exploring the clinical 

relevance of AI assessments, and emphasizing the 

need for clinician involvement in AI development 

to ensure standardized progress in the field. 

Postoperative complication prediction and 

management 

Postoperative complication prediction and 

management are critical for bridging the gap 

between surgery and patient rehabilitation. 

These practices play a key role in improving 

diagnostic and treatment quality while ensuring 

patient safety. Li et al. used traditional logistic 

regression and machine learning models to 

predict the effectiveness of subanesthetic-dose 

intravenous ketamine/esketamine in preventing 

postpartum depression during cesarean section. 

By incorporating maternal clinical characteristics 

into the model, personalized prevention 

strategies can be developed, significantly 

reducing the incidence of postpartum depression 

(46). Choi et al. developed an XGBoost algorithm 

based on the accelerated failure time model to 

predict long-term mortality associated with 

postoperative acute kidney injury. The model 

outperforms traditional approaches, and its use 

of machine learning technology provides a robust 

foundation for formulating targeted 

interventions and clinical guidelines to improve 

patient outcomes (47). Additionally, Li et al. 

applied AI to predict severe postpartum 

hemorrhage in patients with placenta accreta 

spectrum disorders under neuraxial anesthesia 

(48), while Shi et al. used the random forest 

algorithm to predict moderate-to-severe acute 

postoperative pain after orthopedic surgery 

under general anesthesia. The Anesthesia Risk 

Assessment Score (ARAS), developed by 

Khandaker et al., predicts postoperative 

mortality and adverse discharge outcomes. Its 

accuracy is comparable to established tools like 

the American Society of Anesthesiologists 

Physical Status Classification (ASA-PS), the 

Revised Cardiac Risk Index (RCRI), and the 5-item 

Modified Frailty Index (mFI-5). Furthermore, the 

ARAS does not require clinician involvement, 

making it suitable for early preoperative 

assessment and triage (49). 

In the context of postoperative care, Barker et al. 

utilized machine learning to predict unplanned 

care needs in the perioperative post-anesthesia 

care unit (PACU). They advocated for using AI to 

assist anesthesiologists in clinical decision-

making, optimizing PACU management, and 

ensuring that patients receive the safest possible 
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care (50). Khan et al. proposed that AI can 

enhance personalized care by automatically 

tracking and adjusting drug doses, alleviating 

symptoms and reducing the burden on nursing 

staff (51). 

Large Language Models (LLMs) in AI are 

becoming increasingly relevant in the medical 

field. For instance, Choi et al. demonstrated that 

ChatGPT 4.0 can generate high-quality responses, 

significantly aiding patients in obtaining medical 

information, although there is still room for 

improvement in response quality (52). Kuo et al. 

showed that LLMs could reduce patient risks and 

decrease the need for continuous physician 

supervision. These models also align with 

standardized medical knowledge, suggesting that 

they could reshape clinical practices in 

anesthesiology and assist physicians in decision-

making (53). Furthermore, Lomas et al. 

highlighted the potential of GPT-4 to break down 

language barriers in obstetric anesthesia, 

contributing to better patient care and 

influencing both personal and professional life in 

the future (54). 

Reshaping scheduling efficiency and 
innovating educational experiences 
Automated anesthesia documentation and 

record management 

Naik et al. addressed the issue of digital 

anesthesia data gaps in low- and middle-income 

countries by developing a standardized 

anesthesia record form compatible with 

computer vision technology. This form leverages 

computer vision to identify and extract 

anesthesia-related information from paper-

based health records, converting it into digital 

data. This process facilitates the effective 

acquisition and utilization of digital anesthesia 

records, laying the foundation for subsequent 

digital management of anesthesia data (55). Segal 

et al. proposed the use of large language models, 

such as ChatGPT, to assist in writing case reports. 

In their study on anesthesia management for 

patients with juvenile hyaline fibromatosis, 

ChatGPT was able to generate text with correct 

grammar and coherent semantics around the 

anesthesia management process. This tool helps 

clarify the patient's anesthesia care, enhancing 

both the efficiency and quality of anesthesia-

related document writing, including case reports 

(56). 

Intelligent surgical scheduling and resource 

allocation 

Hurley's research developed an artificial 

intelligence-based shift schedule for 

anesthesiology residents, providing a 

comprehensive 6-month plan. This schedule 

assigns an equitable share of on-call duties to 

each resident while enhancing flexibility for leave 

requests. By optimizing workforce allocation, it 

strikes a balance between work fairness and 

residents' personal needs (57). Sumrall et al. 

constructed a data-driven scheduling system 

using artificial intelligence to improve the well-

being of anesthesiologists, such as through a 

more reasonable distribution of workload, while 

indirectly ensuring patient safety. This system 

also supports the continuous improvement and 

flexible adaptation of medical service processes, 

linking the optimization of workforce 

management with enhanced patient safety and 

service quality (58). 

Applications of large language models in 

anesthesia education and training 

AI has made significant strides in the education 

and training of anesthesiology and related fields, 

demonstrating considerable potential. Regarding 

exam preparation and competency assessment, 

Blacker et al. noted that answers generated by 

ChatGPT for the Anesthesiology Specialty Oral 

Examination (SOE) achieved scores comparable 

to those of anesthesiology specialists when 

assessed by examiners. Furthermore, in both the 

basic and advanced sections of the written 

American Board of Anesthesiology (ABA) exam, 
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ChatGPT outperformed GPT-3 and Bard, even 

showing potential to pass the actual oral exam 

(59). Fujimoto et al. found that in the Japanese 

National Dental Anesthesia Licensing 

Examination, ChatGPT-4 and Claude 3 Opus 

exhibited superior performance. However, these 

AI models still face challenges such as verbose 

responses, lack of focus, and an inability to meet 

exam passing criteria, which necessitates further 

optimization (60). In terms of teaching materials, 

Khan et al. highlighted that AI can create virtual 

patient consultation scenarios, enabling trainees 

to practice without the need for actors. 

Additionally, physicians can utilize "no-code" 

platforms to develop personalized tools. While 

AI-generated teaching materials meet medical 

accuracy standards, their reliability has not yet 

reached the necessary level for medical education, 

requiring validation before practical application 

(61, 62). With continued refinement, AI holds the 

potential to provide more robust support for 

education and training in the future. 

Limitations 
Although artificial intelligence (AI) has 

demonstrated diverse capabilities and is 

increasingly applied across various fields, it still 

faces several limitations. First, there is the issue 

of data dependence and quality. While large-scale 

datasets are essential for training AI models, data 

is often constrained by privacy protections, and 

there is a scarcity of data on rare or special cases, 

limiting its broader application. Second, real-time 

performance needs further optimization. During 

sedation, patients' vital signs can fluctuate 

rapidly, and existing AI models may struggle to 

respond accurately to sudden changes in these 

values. Lastly, ethical and safety concerns remain, 

including the potential for AI algorithms to 

exhibit biases, the sensitive nature of patient data, 

and the lack of specific regulatory standards for 

the use of AI in anesthesia. 

Advantages 

With ongoing advancements in algorithm 

optimization and iteration, the integration of 

artificial intelligence (AI) into anesthesiology not 

only enhances the efficiency of anesthesiologists 

but also drives progress in the field itself. 

In the pre-anesthesia preparation phase, AI 

analyzes patients' medical history, physical 

examination results, laboratory data, and other 

relevant information to identify individuals at 

high surgical risk. By providing anesthesiologists 

with personalized treatment plans, AI helps 

reduce the occurrence of adverse events. For 

example, AI models can predict patients' 

responses to anesthetic drugs, enabling the 

formulation of proactive strategies in advance. 

During surgery, AI enables real-time monitoring 

of vital signs such as blood pressure, heart rate, 

and respiration. By integrating various types of 

data, AI can intervene promptly and adjust 

anesthetic dosages to ensure optimal anesthesia 

delivery. For complex procedures, maintaining 

precise anesthetic depth is crucial for patient 

safety and favorable outcomes. In the 

postoperative phase, AI can predict adverse 

events like pain, hypotension, and hypoxemia, 

offering personalized pain management plans 

and facilitating closed-loop management. This 

not only enhances patient care but also 

accelerates recovery time. 

AI also plays a key role in medical education by 

providing extensive learning resources to 

support teaching activities. Additionally, AI is 

used in anesthesia record-keeping and document 

management, which helps alleviate the 

administrative burden on anesthesiologists. 

In summary, AI is involved in the full spectrum of 

anesthesia management, significantly enhancing 

the quality and safety of anesthesia practice. 

Conclusion and Future Directions 
With the ongoing advancement of algorithms and 

iterative improvements, artificial intelligence (AI) 

has rapidly developed and is increasingly being 

applied in the medical field. In anesthesiology, 
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although the integration of AI is relatively recent, 

significant progress has been made in recent 

years, substantially reducing the workload of 

anesthesiologists. Key areas of development 

include more precise drug infusion, enhanced 

intraoperative safety, and more effective 

anesthetic outcomes. Looking ahead, these 

innovations are expected to not only improve the 

efficiency of medical services but also minimize 

patient discomfort during diagnosis and 

treatment. By providing comprehensive safety 

measures throughout the entire perioperative 

process—from preoperative assessment to 

postoperative recovery—AI technologies will 

contribute to the dual enhancement of both 

medical quality and the patient experience. 
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