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Abstract
Background: To enhance the outcomes for moderate to severe forms of Acute Respiratory Distress Syndrome (ARDS), a
personalized lung-protective ventilation approach may be necessary. The challenge lies in personalizing medicine due to the
heterogeneous nature of lung stress/strain.
Objective: Our goal is to propose a dynamic ventilation regimen for ARDS patients via three reward frameworks.
Methods: This research is based on a retrospective analysis of datasets from MIMIC and eICU databases. AI systems are used
in the framework of this study to optimize ideal body weight-adjusted tidal volume (Vt) and positive end-expiratory pressure
(PEEP). The systems rely on reinforcement learning and focus on prognosis, platform pressure, and driving pressure.
Results: Our study incorporates 16,487 patients with moderate to severe ARDS. On average, the reward from the AI systems'
treatment selection is consistently higher than that of human clinicians. The AI systems were more likely to adjust Vt by
roughly 1.5 times and PEEP by about 2.0 times compared to human clinicians. Notably, the lowest mortality was observed in
ARDS patients when the actual doses aligned with the AI-platform's decisions.
Conclusions: Our model provides individualized and easily interpretable treatment decisions for moderate to severe ARDS
patients, potentially enhancing their prognosis. The reward framework based on platform pressure and driving pressure may be
a promising avenue for future research in reinforcement learning models of mechanical ventilation.
Trial registration: Not applicable.
Keywords: Acute Respiratory Distress Syndrome; Mechanical Ventilation; Reinforcement Learning; Prognosis; Platform
Pressure, Driving Pressure

Introduction
Acute respiratory distress syndrome (ARDS) is a
common condition among patients who require
invasive mechanical ventilation, particularly those
with moderate or severe ARDS (1).
Ventilator-derived parameters such as inappropriate
positive end-expiratory pressure (PEEP), plateau
pressures, or driving pressures are associated with
increased hospital mortality (2-4). To minimize the

risk of ventilator-induced lung injury (VILI), it is
recommended that patients with ARDS undergo
lung protective ventilation strategies (3, 5-9).
However, even with lung protective ventilation,
ARDS patients may still be exposed to VILI
(10-12).
Personalized ventilator management involves
assessing the patient-specific risk of VILI and
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weighing the potential risk of interventions aimed at
mitigating VILI (13). It is important to note that
some clinicians fail to consistently make decisions
based on the best evidence (14). While artificial
intelligence (AI) models have mainly focused on
predicting onset or aiding in mechanical ventilation
weaning, there has been limited focus on clinical
decision support (15).
To improve patient outcomes and reduce the
mortality rate of ARDS patients, we have
developed three sets of ventilation strategies based
on the conditions of prognosis, platform pressure,
and driving pressure. These strategies, which are
based on the reinforcement learning algorithm,
dynamically adjust tidal volume and PEEP to
provide doctors with the best mechanical
ventilation program. A small reduction in the
mortality rate of ARDS patients has the potential to
save tens of thousands of lives worldwide each
year.

Methods
Data source
The Laboratory for Computational Physiology at
the Massachusetts Institute of Technology is
responsible for maintaining the Multiparameter
Intelligent Monitoring in Intensive Care
(MIMIC)-III (version 1.4) database, the MIMIC-IV
database, and the eICU Collaborative Research
Database (16-18). Access to these databases is
granted to researchers who have completed training
in the protection of human subjects.

Study population and stratification
The inclusion criteria for this study were: (1) adults
aged 18 years or older upon admission to the ICU;
(2) use of invasive mechanical ventilation (MV) for
a minimum of 72 hours during the ICU stay; (3) a
moderate-severe ARDS diagnosis according to the
Berlin definition during the first 24 hours of ICU
admission (19); (4) documented volume-controlled
ventilation with tidal volume (Vtset) and positive
end-expiratory pressure (PEEP); and (5)
documentation of in-hospital mortality, platform
pressure, and driving pressure.

Ethics statement
Approval of data collection, processing, and release
for the MIMIC-III and MIMIC-IV been granted by
the Institutional Review Boards of Beth Israel
Deaconess Medical Center (Boston, MA, USA) and
the Massachusetts Institute of Technology
(Cambridge, MA, USA). Approval of data
collection, processing and release for the eICU
database has been granted by the eICU research
committee and exempt from Institutional Review
Board approval. Because this study was a
secondary analysis of fully anonymized data,
individual patient consent was not required.

Data extraction
The extraction of data was carried out using
customized scripts written in Standardized Query
Language (SQL) for the MIMIC and eICU
databases, and performed on the PostgreSQL
object-relational database system. The eICU
research committee approved the collection,
processing, and release of data from the eICU
database and it was exempt from Institutional
Review Board approval.

Preprocessing steps
The data for this study was collected from the first
72 hours after the onset of moderate-to-severe
ARDS during mechanical ventilation to capture the
early phase of its management (20, 21). From both
MIMIC-III and eICU databases, 49 variables were
extracted, including demographics, vital signs,
laboratory values, fluid balance, comorbidities,
medical scores, and hospital characteristics. The
patient data was coded as multidimensional discrete
time series with 4-hour time increments. For
variables with multiple measurements within a
4-hour time step, the values were either averaged
(e.g., heart rate) or summed (e.g., urine output) as
appropriate. Comorbidities were determined based
on diagnoses recorded during the hospitalization
(22).
The data was checked for outliers and errors using
frequency histograms and univariate statistical
approaches (Tukey's method). Any errors were
corrected when possible, and parameters were
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capped to clinically plausible values. Missing data
was imputed using the Multivariate Imputation by
Chained Equations (MICE) method.

Building the computational model
The physiological state of a patient can only be
partially represented by the available data, making
the disease process a partially observable Markov
Decision Process (MDP). An MDP was utilized to
approximate the patient's trajectory and model the
decision-making process (23, 24). Our problem was
projected as a MDP defined by the 4-tuple
(�, �, �, �, �) in the following sections.
Every 4 hours, � is defined as a finite set of states,
summarizing a patient's clinical characteristics
through clustering of their 44 clinical features data
fingerprint. � is the set of available actions from a
given state � . � represents the reward signal
received as feedback after transitioning to a defined
state. The transition matrix �(�', �, �) contains the
probability of moving from state � to �' at time
� + 1 , through action a and describes the dynamics
of the system. The discount factor � models the
fact that future rewards are worth less than
immediate rewards and a high discount factor will
result in higher values for rewards received earlier
in the decision-making process compared to those
received later.
The state space was defined in the clustering
procedure by clustering all patient time series from
the three datasets using K-means clustering. To
ensure a highly granular model and avoid using a
too large state space, we used Bayesian and Akaike
information criteria to determine the optimal
number of clusters (as described in Supplement file
3 and Supplement file 4). This prevented the state
space from having sparsely populated states.
Before clustering, the data was pre-processed to
account for unequal means and variances. Normal
data was standardized and log-normal data was
log-transformed before standardization. Factor
variables did not need to be pre-processed (25). The
normality of each variable was tested using visual
methods such as quantile-quantile plots and
frequency histograms.

The goals of a mechanical ventilation regime are
the reduction of VILI while maintaining adequate
oxygenation and decarboxylation. Consequently,
we focused on a total of two parameters to be
included in the action space, influencing these
overall goals: Ideal body weight-adjusted (target)
Vtset and PEEP. Ideal body weight-adjusted Vt was
calculated relative to a predicted body weight for
males as 50 + (0·91 × [height in centimeters -
152·4]) and for females as 45·5 + (0·91 × [height in
centimeters - 152·4]). As a result, � is the finite
number of possible actions at any given state based
on a combination of the two aforementioned
parameters. Based on frequency analysis, Vtset and
PEEP converted into discrete decisions of seven
treatment levels. This results in a two-dimensional
action space of 49 discrete actions. It is worth
mentioning that there was no option of a zero policy
and the algorithm always had to decide towards one
ventilation policy.
The formulation of reward function is the key in
successful applications of RL approaches. We have
designed three sets of reward systems and named
Prognosis-AI, Platform-AI, and Driving-AI (26-31).
Mortality remains the most widely accepted
endpoint for ARDS trials. In Prognosis-AI models,
we used hospital mortality as the sole defining
factor for the system-defined penalty and reward.
When a patient survived, a positive reward was
released at each patient’s trajectory (a ‘reward’
of + 1); a negative reward (a ‘penalty’ of –1) was
issued if the patient died. In Platform-AI models,
we used plateau pressure as the defining factor for
the system-defined penalty and reward. The
positive reward was released when a patient with
plateau pressure ≤25 cm H2O (a ‘reward’ of +1); the
negative reward was issued if the patient with
plateau pressure >25 cm H2O (a ‘reward’ of
1-0·2*(plateau pressure-25)). In Driving-AI models,
the defining factor for the system-defined penalty
and reward were driving pressure. The positive
reward was released if a patient with driving
pressure ≤15 cm H2O (a ‘reward’ of + 1); the
negative reward was issued when the patient with
driving pressure >15 cm H2O (a ‘reward’ of
1-0·2*(driving pressure-15)).
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In reinforcement learning, a policy � corresponds
to a set of rules dictating which action is taken
while in a particular state (23, 24). Each MDP
determines a state-action value function �� , that
reflects the expected sum of discounted rewards for
choosing an action while in a particular state, and
following a policy � thereafter. �� summarizes
the effect of the treatment decisions on the patient’s
outcomes, with beneficial decisions having positive
�� values and harmful decisions negative ��

values.

Estimation of the AI policy
We learned a theoretical optimal policy for the
MDP using in-place policy iteration, which
identified the decisions that maximize the sum of
rewards, hence the expected survival of patients
(24). Policy iteration started with a random policy
that was iteratively evaluated and then improved
until converging to an optimal solution (32).

Evaluation of clinicians' actions
Temporal difference (TD) learning is a model-free
algorithm, in which learning happens through the
iterative correction of your estimated returns
towards a more accurate target return (24). We
stopped the evaluation after processing 500,000
patient trajectories with resampling, which is when
the value of the estimated policy reached an
asymptote.

Model evaluation
We generated 500 different models from various
random splits (80%) of the three datasets. In each
model, K-means clustering is performed to
instantiate a different state space. Based on the
euclidean distance to the nearest cluster centroid,
state membership and corresponding action for test

set data points is determined. Furthermore, we
implemented a type of HCOPE method, WIS, and
used bootstrapping to estimate the true distribution
of the policy value in the test sets (33, 34). The
approach is adopted in wide range of high-risk
applications.
In each model, we also estimated the value of a
random policy for comparison. As recommended,
the selected final model maximizes the 95%
confidence lower bound of the AI policy among the
500 candidate models (33). We demonstrate that
this bound consistently exceeded the 95%
confidence upper bound of the clinicians' policy,
provided that enough models were built.
We also measured the performance of the AI policy
using direct indicators and analyzed patient
outcomes as a function of the gap between
clinicians and AI policies (32, 35). Here, we
analyzed patient mortality in the test sets for which
the respiratory parameters actually administered
corresponded to or differed from the respiratory
parameters suggested by the AI policy.

Results
This study was conducted and reported in
accordance with CONSORT-AI extension
guidelines (36). Our RL models were built and
validated on three large nonoverlapping ICU
databases containing data routinely collected from
adult patients in the United States (Figure 1). After
exclusion of ineligible cases, 16,487
moderate-severe ARDS patients were ultimately
included in this study, including 6,348 patients from
the eICU dataset, 6752 patients from the MIMIC-III
dataset, and 3387 patients from the MIMIC-IV
dataset. Patient clinical and demographic properties
are shown in Table 1.



Li et al. Artificial intelligence mechanical ventilation

© 2024 International Association for Intelligent Anesthesia 5 Intelligent Anesthesia 2024;11(1):1. Doi: **.***/******

Figure 1. Selection of the best AI policy and model calibration. The shades represent the 95% upper-lower-bound of the
estimated performance of policy. The green line, orange line, red line represents the mean reward for AI policy, clinicians' policy,
and random AI policy in turn. The dotted orange line represents the mean reward for the overall return of the historical doctor's
original strategy. (a) Prognosis policy. (b) Platform policy. (c) Driving policy.

Figure 2. Visualization of the clinician and AI action. All actions were aggregated over all time steps for the seven treatment
levels. One to seven of tidal volume action space are 0-2.5 ml/Kg, 2.5-5.0 ml/Kg, 5.0-7.5 ml/Kg, 7.5-10.0 ml/Kg, 10.0-12.5 ml/Kg,
12.5-15.0 ml/Kg, and >15.0 ml/Kg; one to seven of Positive end-expiratory pressure are 0-5 cmH2O, 6-7 cmH2O, 8-9 cmH2O,
10-11 cmH2O, 12-13 cmH2O, 14-15 cmH2O, and >16 cmH2O. (a) Clinicians' action. (b) Prognosis-AI action. (c) Platform-AI
action. (d) Driving-AI action.

Table 1. Clinical and demographic properties of the study population.

Clinical Variable* eICU dataset MIMIC-III
dataset

MIMIC-IV
dataset ALL

Number Of Included Patients 6348 6752 3387 16487
APACHE-III scoring 61 (45-79) 52 (39-68) 82 (62-102) 60 (44-81)
Patient Complications, No.
(%)
Congestive heart failure 292 (4.6) 1030 (15.3) 318 (9.4) 1640 (9.9)
Chronic pulmonary disease 755 (11.9) 1620 (24) 390 (11.5) 2765 (16.8)

Mechanical Ventilation
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Tidal volume, mL 500
(430-520)

527
(460-605)

450
(397-503)

500
(430-550)

Respiratory rate, counts
per minute 16 (14-20) 18 (15-23) 20 (16-24) 18 (14-22)

Positve end-expiratory
pressure, cmH2O

5 (5-8) 5 (5-8) 5 (5-10) 5 (5-8)

First mechanical
ventilation, No. (%) 4543 (71.6) 4216 (62.4) 1899 (56.1) 10658 (64.6)

Mechanical ventilation
time, hours

137
(95-218.2)

149
(103-242) 127 (92-191) 139 (97-223)

Clinical Outcome

ICU stay, hours 276.1
(176.9-453.9)

366
(232.3-606.4)

400.6
(257-635.1)

335.6
(211.1-554.2)

Hospital stay, hours 439.7
(282.9-666.2)

542.6
(347.8-821.1)

569.8
(367.5-895.7)

501.6
(325.1-778)

Hospitalized death, No.
(%) 1710 (26.9) 1861 (27.6) 1149 (33.9) 4720 (28.6)

Abbreviations: APACHE-III score, the acute physiology and chronic health evaluation III
score.
*Data shown as mean ± standard deviation, number (percent), or median (interquartile range)
as appropriate.

To conservatively evaluate the differences in
performance in the 20% test dataset (58,339
mechanical ventilation events), we compared the
95% bound of the performance of the best AI policy,
clinicians' policy, and random AI policy (Figure 1).
We found that the reward of the best AI policy
outperformed the reward of the clinicians' policy. In
addition, there is a skewed distribution in the
reward values in the best model of prognosis-AI,
platform-AI, and driving-AI.
Approximately 45·18% of the tidal volumes in the
ventilation strategies used in historical patients
were 5-7·5 ml/kg, and 42·43% were 7·5-10 ml/kg
(Figure 2A and Supplement file 5). A total of
54·31% of patients received PEEP at 0-5 cmH2O,
15·05% of patients received PEEP at 8-9 cmH2O,
and 15·03% of patients received PEEP at 10-11
cmH2O.
The recommended tidal volume in the prognostic
model was 2·5-5 ml/kg in 18·93% of patients, 5-7·5
ml/kg in 22·16% of patients, 7·5-10 ml/kg in
25·07% of patients, and 10-12·5 ml/kg in 22·03%
of patients (Figure 2B). The PEEP
recommendations by the prognostic model were 5

cmH2O in 28·68%, 6-7 cmH2O in 13·41%, 8-9
cmH2O in 17·43%, 10-11 cmH2O in 10·94%, and
12-13 cmH2O in 17·24%.
The recommended tidal volume for the plateau
pressure model was 2·5-5 ml/kg for 29·05%, 5-7·5
ml/kg for 33·70%, 7·5-10 ml/kg for 21·20%, and
10-12·5 ml/kg for 12·74% (Figure 2C). Regarding
the recommended PEEP in the plateau pressure
model, 44·28% of the patients received PEEP at 0-5
cmH2O, 23·88% of the patients received PEEP at
6-7 cmH2O, 13·72% of the patients received PEEP
at 8-9 cmH2O, 9·69% of the patients received PEEP
at 10-11 cmH2O, and 5·30% of the patients
received PEEP at 12-13 cmH2O. On average, the AI
Clinician recommended a lower Vt and a lower
PEEP than the clinicians' actual treatments.
The tidal volume in the driving pressure model was
2·5-5 ml/kg for 12·30%, 5-7·5 ml/kg for 40·35%,
7·5-10 ml/kg for 24·46%, and 10-12·5 ml/kg for
15·46% (Figure 2D). The recommended patient
PEEP in the driving pressure model was 0-5
cmH2O in 8·70%, 6-7 cmH2O in 18·02%, 8-9
cmH2O in 16·82%, 10-11 cmH2O in 17·08%, and
12-13 cmH2O in 17·75%.
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Figure 3. The probability of the clinician and AI action changes. The probability of parameters changes is shown in
mechanically ventilated of ARDS patients at each 4 h time step. (a) Volume action changes. (b) PEEP action.

Figure 4. Visualization of the difference between the given and AI-policy suggested actions in hospital mortality. The action
excess, referring to the difference
between the given and suggested respiratory
parameters averaged over all time points per patient.
The probability of parameters changes is shown in

mechanically ventilated of ARDS patients at each
4 h time step. The figure is built by bootstrapping
with 3000 resamplings. (a) The difference of
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volume action changes. (b) The difference of PEEP
action changes.
Through our analysis of the frequency of changes in
breathing parameters at 4-hour intervals, we found
that the overall adjustment probability of tidal
volume among clinicians was approximately 0·17,
while the overall adjustment probability of the three
artificial intelligences was approximately 0·3. The
overall adjustment probability of the AI model to
respiratory parameters was approximately 1·5 that
of the clinician policy (Figure 3A). The overall
adjustment probability of PEEP by clinicians is
approximately 0·13, while the adjusted probability
of the three AI actions is approximately 0·3. The
overall adjustment probability of the AI model to
respiratory parameters was approximately twice
that of the clinician policy (Figure 3B).
Compared with the actual clinical strategy, we
compared the relationship between tidal volume
and PEEP between the best AI strategy and
mortality under the three reward strategies (Figure
4). Compared with the Plateau-AI strategy, the tidal
volume strategies increased the mortality rate of the
patients (Figure 4A). In terms of clinical strategy,
the mortality rate of ARDS patients who underwent
the tidal volume strategy was lower than that of the
patients who underwent the driving pressure AI
strategy. Compared with historical actions, the
prognostic AI strategy and the platform pressure AI
strategy adjust PEEP parameters to reduce the
mortality of ARDS patients (Figure 4B).

Discussion
We demonstrated the application of reinforcement
learning to customize clinically understandable
mechanical ventilation strategies for ARDS patients.
Our findings indicate that patients treated with the
recommendations of AI clinicians had the lowest
mortality rate. Our reward framework for AI
mechanical ventilation, which is based on airway
pressure, serves as a guide for future research on
reinforcement learning models for mechanical
ventilation.
The use of an artificial intelligence model for
mechanical ventilation allows for the adjustment of
parameters based on various clinical characteristics

(37). By utilizing a dynamic reinforcement learning
model, clinicians can develop an optimized
ventilation strategy for each individual patient (37).
Predictive machine learning models have also been
used to predict the risk of hospital mortality in
mechanically ventilated ICU patients using data
from the MIMIC-III database (38). A recent large
prospective study across multiple centers suggested
that higher PEEP levels may be associated with
worse outcomes for critically ill patients with
severe respiratory infection (27).
In our study, we found that the actions
recommended by the Platform Pressure reward
setting were more aligned with clinical perspectives
compared to the Driving Pressure reward setting.
The low tidal volume ventilation strategy was better
reflected in the actions recommended by the Plateau
Pressure. Our Prognosis-AI and Platform-AI policy
models revealed that as the predicted Vt and PEEP
values approached the actual values, the mortality
rate decreased. On the other hand, death due to
hypoventilation or VILI may occur if the Vt and
PEEP are not appropriate.
Therefore, in the respiratory support for ARDS
patients undergoing invasive mechanical ventilation,
it is crucial to recognize the potential risks of
hypoventilation and VILI and adopt methods to
detect and adjust respiratory parameters. Our study
offers effective respiratory support decision
recommendations based on tidal volume and PEEP,
which demonstrate good predictive accuracy in
ARDS patients. Specifically, those patients whose
actual tidal volume and PEEP settings align with
the recommendations of the Prognosis-AI and
Platform-AI models have better outcomes, while
those whose actual settings differ from the
recommended settings show poorer outcomes.
Our study has two key strengths. Firstly, it is the
first to establish reinforcement learning models
specifically focused on mechanically ventilated
ARDS patients. Secondly, we utilized platform
pressure and driving pressure as reward and
punishment rules to construct an artificial
intelligence decision model for mechanical
ventilation.
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Our study has some limitations that should be noted.
Firstly, the selection of 300 respiratory state
clusters by the AIC and BIC methods limited our
ability to simultaneously optimize multiple
adjustable mechanical ventilation parameters.
Secondly, the division of numerical respiratory
parameters into equal parts may not accurately
reflect the real-world scenario where breathing
parameters may vary differently. Thirdly, the
model's performance was based on historical patient
data and requires further evaluation through
prospective studies. Fourthly, the use of a large
dataset and routinely collected clinical data led to
the exclusion of some sites and patients due to poor
recording quality or missing data.
Additionally, our findings showed that including all
critically ill patients with mechanical ventilation in
the model for breathing strategy did not align with
the low tidal volume ventilation strategy for
recommending actions for respiratory parameters in
ARDS patients. However, our findings indicated
that the recommended actions from modeling
respiratory parameters based on historical ARDS
patient data were aligned with existing clinical
perspectives.
AI will not replace clinicians anytime soon.
However, the model provides recommendations for
setting respiratory parameters with
multidimensional patient-specific information,
enabling clinicians to phenotype patients, and
leading the way for widespread use of precision
medicine (39).
In conclusion, we have compared three decision
models using reinforcement learning, which are
based on different reward frameworks to automate
the setting of breathing parameters for mechanical
ventilation. The models integrate information on the
state of mechanically ventilated patients and
demonstrate the potential of AI respiratory support
technology for invasive respiratory support in
ARDS patients.
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